- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chandler, Maia (2)
-
Adams, Ellen M (1)
-
Bialas, April L (1)
-
Collins, Eva-Maria S (1)
-
Davis, Daniel (1)
-
Diamond, Patrick H (1)
-
Goel, Tapan (1)
-
Goodman, Aaron (1)
-
Martin, Sara (1)
-
Newton, Lacie (1)
-
Rowe, Trevor (1)
-
Schubert, Johanna (1)
-
Tran, Cassidy M (1)
-
Ware, Jessica (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nannothemis bella Uhler, 1857 (Odonata: Libellulidae), the smallest dragonflyin North America, inhabit bogs and sedge fens across their distribution, spanning fromQuebec (Canada) south to Florida and west to Minnesota and Louisiana (USA). While commonin the northern part of their range, N. bella is of conservation concern in the southernpopulations where they are disjunct and rare. Little work has been done on the ecologyand geographic conservation of this species. To fill this knowledge gap, we constructedspecies distribution models (SDMs) to analyze the spatial distribution and climatic nicheof N. bella, define factors in habitat suitability and estimate potential niche shifts underclimate change and inform conservation efforts. Our present-day SDMs indicate the dominantenvironmental elements determining habitat suitability include the proportion of siltin soil, temperature seasonality, percentage of clay and coarse components in soil, and soilclass. Our paleodistribution models show a southern distribution within the last glacialmaximum, with a shift northward 8,326 to 4,200 years ago. Our projected SDMs for 2050under RCP 2.6 and RCP 8.5 predict a significant decrease in habitat suitability throughoutthe entire range of N. bella. As such, N. bella is a species of conservation concern andconservation measures are imperative for its continued existence as a much-needed bioindicatorfor these freshwater ecosystems. Additionally, this ecological knowledge providesthe foundation for identifying population sites from which to collect N. bella for futurepopulation genetic studies.more » « lessFree, publicly-accessible full text available December 6, 2025
-
Goel, Tapan; Adams, Ellen M; Bialas, April L; Tran, Cassidy M; Rowe, Trevor; Martin, Sara; Chandler, Maia; Schubert, Johanna; Diamond, Patrick H; Collins, Eva-Maria S (, Proceedings of the Royal Society B: Biological Sciences)Hydrahas a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other.Hydralacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowingHydrato ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show thatHydramouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening.Hydramouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.more » « less
An official website of the United States government
